67 research outputs found

    Lagrangian FE methods for coupled problems in fluid mechanics

    Get PDF
    Lagrangian finite element methods emerged in fluid dynamics when the deficiencies of the Eulerian methods in treating free surface flows (or generally domains undergoing large shape deformations) were faced. Their advantage relies upon natural tracking of boundaries and interfaces, a feature particularly important for interaction problems. Another attractive feature is the absence of the convective term in the fluid momentum equations written in the Lagrangian framework resulting in a symmetric discrete system matrix, an important feature in case iterative solvers are utilized. Unfortunately, the lack of the control over the mesh distortions is a major drawback of Lagrangian methods. In order to overcome this, a Lagrangian method must be equipped with an efficient re-meshing tool. This work aims at developing formulations and algorithms where maximum advantage of using Lagrangian finite element fluid formulations can be taken. In particular we concentrate our attention at fluid-structure interaction and thermally coupled applications, most of which originate from practical “real-life” problems. Two fundamental options are investigated - coupling two Lagrangian formulations (e.g. Lagrangian fluid and Lagrangian structure) and coupling the Lagrangian and Eulerian fluid formulations. In the first part of this work the basic concepts of the Lagrangian fluids, the so-called Particle Finite Element Method (PFEM) [1], [2] are presented. These include nodal variable storage, mesh re-construction using Delaunay triangulation/tetrahedralization and alpha shape-based method for identification of the computational domain boundaries. This shall serve as a general basis for all the further developments of this work. Next we show how an incompressible Lagrangian fluid can be used in a partitioned fluid-structure interaction context. We present an improved Dirichlet-Neumann strategy for coupling the incompressible Lagrangian fluid with a rigid body. This is finally applied to an industrial problem dealing with the sea-landing of a satellite capsule. In the following, an extension of the method is proposed to allow dealing with fluid-structure problems involving general flexible structures. The method developed takes advantage of the symmetry of the discrete system matrix and by introducing a slight fluid compressibility allows to treat the fluid-structure interaction problem efficiently in a monolithic way. Thus, maximum benefit from using a similar description for both the fluid (updated Lagrangian) and the solid (total Lagrangian) is taken. We show next that the developed monolithic approach is particularly useful for modeling the interaction with light-weight structures. The validation of the method is done by means of comparison with experimental results and with a number of different methods found in literature. The second part of this work aims at coupling Lagrangian and Eulerian fluid formulations. The application area is the modeling of polymers under fire conditions. This kind of problem consists of modeling the two subsystems (namely the polymer and the surrounding air) and their thermomechanical interaction. A compressible fluid formulation based on the Eulerian description is used for modeling the air, whereas a Lagrangian description is used for the polymer. For the surrounding air we develop a model based upon the compressible Navier-Stokes equations. Such choice is dictated by the presence of high temperature gradients in the problem of interest, which precludes the utilization of the Boussinesq approximation. The formulation is restricted to the sub-sonic flow regime, meeting the requirement of the problem of interest. The mechanical interaction of the subsystems is modeled by means of a one-way coupling, where the polymer velocities are imposed on the interface elements of the Eulerian mesh in a weak way. Thermal interaction is treated by means of the energy equation solved on the Eulerian mesh, containing thermal properties of both the subsystems, namely air and polymer. The developments of the second part of this work do not pretend to be by any means exhaustive; for instance, radiation and chemical reaction phenomena are not considered. Rather we make the first step in the direction of modeling the complicated thermo-mechanical problem and provide a general framework that in the future can be enriched with a more detailed and sophisticated models. However this would affect only the individual modules, preserving the overall architecture of the solution procedure unchanged. Each chapter concludes with the example section that includes both the validation tests and/or applications to the real-life problems. The final chapter highlights the achievements of the work and defines the future lines of research that naturally evolve from the results of this work

    Vaccinia Virus Protein C6 Is a Virulence Factor that Binds TBK-1 Adaptor Proteins and Inhibits Activation of IRF3 and IRF7

    Get PDF
    Recognition of viruses by pattern recognition receptors (PRRs) causes interferon-β (IFN-β) induction, a key event in the anti-viral innate immune response, and also a target of viral immune evasion. Here the vaccinia virus (VACV) protein C6 is identified as an inhibitor of PRR-induced IFN-β expression by a functional screen of select VACV open reading frames expressed individually in mammalian cells. C6 is a member of a family of Bcl-2-like poxvirus proteins, many of which have been shown to inhibit innate immune signalling pathways. PRRs activate both NF-κB and IFN regulatory factors (IRFs) to activate the IFN-β promoter induction. Data presented here show that C6 inhibits IRF3 activation and translocation into the nucleus, but does not inhibit NF-κB activation. C6 inhibits IRF3 and IRF7 activation downstream of the kinases TANK binding kinase 1 (TBK1) and IκB kinase-ε (IKKε), which phosphorylate and activate these IRFs. However, C6 does not inhibit TBK1- and IKKε-independent IRF7 activation or the induction of promoters by constitutively active forms of IRF3 or IRF7, indicating that C6 acts at the level of the TBK1/IKKε complex. Consistent with this notion, C6 immunoprecipitated with the TBK1 complex scaffold proteins TANK, SINTBAD and NAP1. C6 is expressed early during infection and is present in both nucleus and cytoplasm. Mutant viruses in which the C6L gene is deleted, or mutated so that the C6 protein is not expressed, replicated normally in cell culture but were attenuated in two in vivo models of infection compared to wild type and revertant controls. Thus C6 contributes to VACV virulence and might do so via the inhibition of PRR-induced activation of IRF3 and IRF7

    Analysis of the melting, burning and flame spread of polymers with the Particle Finite Element Method

    No full text
    A computational procedure for analysis of the melting, burning and flame spread of polymers under fire conditions is presented. The method, termed Particle Finite Element Method (PFEM), combines concepts from particle-based techniques with those of the standard finite element method (FEM). The key feature of the PFEM is the use of an updated Lagrangian description to model the motion of nodes (particles) in the thermoplastic material. Nodes are viewed as material points which can freely move and even separate from the main analysis domain representing, for instance, the effect of melting and dripping of polymer particles. A mesh connects the nodes defining the discretized domain where the governing equations are solved using the FEM. An incremental iterative scheme for the solution of the nonlinear transient coupled thermal-flow problem, including radiation, loss of mass by gasification and combustion is used. Examples of the possibilities of the PFEM for the modelling and simulation of the melting, burning and flame spread of polymers under different fire conditions are described

    Multiphysics Simulation Environments for Shell and Spatial Structures

    Full text link
    IASS-IACM 2008 Session: Multiphysics Simulation Environments for Shell and Spatial Structures -- Session Organizers: Fehmi CIRAK (University of Cambridge), Ekkehard RAMM (Stuttgart University) -- Keynote Lecture: "Advanced approaches for fluid-shell interaction" by Wolfgang A. WALL , Axel GERSTENBERGER, Ursula M. MAYER, Ulrich KUTTLER (TU Munich) -- "Numerical simulation of fluid-structure interaction for wind-induced dynamic response of the 3rd Jinan Yellow River cable-stayed bridge" by Qi-Lin ZHANG , Zhen-Hua LIU (Tongji University), Ying ZHOU (Shandong University) -- "A consistent finite element approximation for piezoelectric shell structures" by Dieter LEGNER , Sven KLINKEL, Werner WAGNER (University of Karlsruhe) -- "Vibration analysis of thin-walled - gas or fluid filled - structures including the effect of the inflation/filling process" by Karl SCHWEIZERHOF , Marc HABLER (University of Karlsruhe) -- "Thin-walled structures interacting with incompressible flows" by Ekkehard RAMM , Malte VON SCHEVEN (University of Stuttgart), Christiane FORSTER, Wolfgang A. WALL (TU Munich) -- "Full SPH modeling of the dynamic failure of shells filled with a fluid" by Alain COMBESCURE (LaMCoS) -- , Farid ABED MERAIM (LPMM), Bertrand MAUREL (LaMCoS) -- "Fluid-shell coupled simulation of supersonic disk-gap-band parachutes" by Konstantinos KARAGIOZIS, Ramji KAMAKOTI, Carlos PANTANO (University of Illinois at Urbana-Champaign), Fehmi CIRAK (University of Cambridge) -- "Strongly coupled approach for the treatment of the fluid-structure interaction problems involving highly deformable solids and shells" by Riccardo ROSSI , P. RYZHAKOV, Eugenio ONATE (CINME, UPC) -- "Numerical simulation of fluid-structure interaction for wind-induced dynamic response of cylindrical steel tanks with a dome roof" by Qi-Lin ZHANG , Zhen-Hua LIU (Tongji University), Ying ZHOU (Shandong University

    Reduced core transport in T-10 and TEXTOR discharges at rational surfaces with low magnetic shear

    Get PDF
    It has been observed in the T-10 tokamak that immediately after off-axis electron cyclotron resonance heating (ECRH) switch-off, the core electron temperature stays constant for some time, which can be as long as several tens of milliseconds, i.e. several energy confinement times (tau(E)), before it starts to decrease. Whether or not the effect is observed depends critically on the local magnetic shear in the vicinity of the q = 1 rational surface, which should be close to zero. It is hypothesized that a small shear can induce the formation of an internal transport barrier. Measurements of density fluctuations in the transport barrier with a correlation reflectometer show immediately after the ECRH switch-off a clear reduction in the fluctuation level, corroborating the above results. The delayed temperature decrease has also been observed in similar discharges in the TEXTOR tokamak; however, the delay is restricted to similar to1 x tau(E)
    corecore